Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data
نویسندگان
چکیده
Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.
منابع مشابه
Brain Decoding for Brain Mapping: Definition, Heuristic Quantification, and Improvement of Interpretability in Group MEG Decoding
In the last century, a huge multi–disciplinary scientific endeavor is devoted to answer the historical questions in understanding the brain functions. Among the statistical methods used for this purpose, brain decoding provides a tool to predict the mental state of a human subject based on the recorded brain signal. Brain decoding is widely applied in the contexts of brain–computer interfacing,...
متن کاملInterpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the br...
متن کاملDecoding an individual's sensitivity to pain from the multivariate analysis of EEG data.
The perception of pain is characterized by its tremendous intra- and interindividual variability. Different individuals perceive the very same painful event largely differently. Here, we aimed to predict the individual pain sensitivity from brain activity. We repeatedly applied identical painful stimuli to healthy human subjects and recorded brain activity by using electroencephalography (EEG)....
متن کاملNeural Population Decoding Reveals the Intrinsic Positivity of the Self.
People are motivated to hold favorable views of themselves, which manifests as a positivity bias when evaluating their own performance and abilities. However, it remains an open question whether positive affect is an essential component of people's self-concept. Prior functional neuroimaging research demonstrated that similar regions of the brain support positive affect and self-referential pro...
متن کاملApplication of multivariate techniques in-line with spatial regionalization of AOD over Iran
Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cognitive neuroscience
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2017